Exploring plastic and genetic responses to temperature variation using copper butterflies
نویسندگان
چکیده
Variable thermal environments experienced by most organisms warrant mechanisms to adjust the expression of phenotypic values to environmental needs. Here we explored short(mainly developmental plasticity) and long-term effects (genetic differentiation across altitudes) of temperature variation using copper butterflies as model organisms. Lower compared to higher developmental temperatures yielded predictable variation by increasing development time, body size, total food consumption, the efficiency of converting digested food into body matter, and cold stress resistance, but decreasing daily food consumption, assimilation efficiency, body fat and protein content, weight loss at metamorphosis, the proportion of directly developing individuals, pupal melanisation and heat stress resistance. While variation in temperature stress resistance and developmental pathways is likely to reflect adaptive phenotypic plasticity, the reasons underlying variation in other traits are less clear. High-altitude populations showed increased development time, egg size, flight performance, wing and pupal melanisation and cold stress resistance, but decreased body fat content and heat stress resistance, compared to low-altitude populations. The differences seem to be mainly caused by thermal adaptation and seasonal time constraints. Cold stress resistance was related to variation at the phosphoglucose isomerase locus, and variation in heat stress resistance showed patterns similar to variation in the expression of stress-inducible heat shock proteins. High-altitude populations showed clearly reduced plasticity in heat stress tolerance, which may pose a substantial problem, given the rising temperatures at a global scale.
منابع مشابه
Genetic Variation in Long-Term and Short-Term Physiological Changes in Daphnia magna During Acclimation to High Temperature
The aquatic zooplankton crustacean Daphnia magna must be able to tolerate thermal stress in order to survive their native shallow ponds that are susceptible to drastic seasonal and diurnal temperature fluctuations as well as to globally increasing temperatures. Survival in such variable environments requires plastic responses that must include fundamental aspects of Daphnia biochemistry and phy...
متن کاملFitness Costs of Thermal Reaction Norms for Wing Melanisation in the Large White Butterfly (Pieris brassicae)
The large white butterfly, Pieris brassicae, shows a seasonal polyphenism of wing melanisation, spring individuals being darker than summer individuals. This phenotypic plasticity is supposed to be an adaptive response for thermoregulation in natural populations. However, the variation in individuals' response, the cause of this variation (genetic, non genetic but inheritable or environmental) ...
متن کاملGenomic architecture of adaptive color pattern divergence and convergence in Heliconius butterflies.
Identifying the genetic changes driving adaptive variation in natural populations is key to understanding the origins of biodiversity. The mosaic of mimetic wing patterns in Heliconius butterflies makes an excellent system for exploring adaptive variation using next-generation sequencing. In this study, we use a combination of techniques to annotate the genomic interval modulating red color pat...
متن کاملAbundant Gene-by-Environment Interactions in Gene Expression Reaction Norms to Copper within Saccharomyces cerevisiae
Genetic variation for plastic phenotypes potentially contributes phenotypic variation to populations that can be selected during adaptation to novel ecological contexts. However, the basis and extent of plastic variation that manifests in diverse environments remains elusive. Here, we characterize copper reaction norms for mRNA abundance among five Saccharomyces cerevisiae strains to 1) describ...
متن کاملA model for tracking temperature variation in cold and hot metal working conditions during machining operations
This paper presents a mathematical model that could assist in measuring, monitoring and controlling tem-perature variation in cold and ‘red-hot’ metal working conditions of machining. A numerical analysis tech-nique of the temperature distribution, based on the theory of complex applied potential, was carried out using the principles of relationship analysis between the paths of heat supply in ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010